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Abstract--This article presents an investigation which studied how training o f  sigma-pi networks with the associative 
reward-penalty ( A R-p ) regime may be enhanced by using two networks in parallel. The technique uses what has been 
termed an unsupervised "'adaptive critic element" (ACE)  to give critical advice to the supervised sigma-pi network. 
We utilise the conventions that the sigma-pi neuron model uses (i.e., quantisation o f  variables) to obtain an 
implementation we term the "'quantised adaptive critic", which is hardware realisable. The associative reward- 
penalty training regime either rewards, r = 1, the neural network by incrementing the weights o f  the net by a delta 
term times a learning rate, ~, or penalises, r = O, the neural network by decrementing the weights by an inverse delta 
term times the product o f  the learning rate and a penalty coefficient, ~ × Arp. Our initial research, utilising a 
"'bounded" reward signal, r* E { 0 , . . . ,  1}, found that the critic provides advisory information to the sigma--pi net 
which augments its training efficiency. This led us to develop an extension to the adaptive critic and associative 
reward-penalty methodologies, utilising an "unbounded" reward signal, r* E { -  1 , . . . ,  2}, which permits penalisation 
o f  a net even when the penalty coefficient, Arp, is set to zero, A,p = O. One should note that with the standard 
associative reward-penalty methodology the net is normally only penalised i f  the penalty coefficient is non-zero (i.e., 
0 < Arp ~< 1). One o f  the enigmas o f  associative reward-penalty (AR-I,) training is that it broadcasts sparse 
information, in the form o f  an instantaneous binary reward signal, that is only dependent on the present output error. 
Here we put forward ACE and AR-I,  methodologies for  sigma-pi nets, which are based on tracing the frequency o f  
• "stimuli" occurrence, and then using this to derive a prediction o f  the reinforcement. The predictions are then used to 
derive a reinforcement signal which uses temporal information. Hence one may use more precise information to 
enable more efficient training. Copyright ©1996 Elsevier Science Ltd 

Keywords--Sigma-pi, Adaptive critic, Associative reward-penalty, Multi-cube, Reinforcement, Dynamic 
programming. 

1. I NTRODUCTION 

Biological neurons and synapses have information 
processing capabilities that make use of  both short- 
and long-term information. We build on this fact by 
utilising longer term information extracted from the 
model of  reality (F). The model of  reality may be: 
(1) a simulation model of  the environment or reality 

(R); 
(2) a network trained to simulate the environment; or  
(3) a set of  stimuli and actions, which approximate 

the environment 's bchaviour. 
This information is used in order to approximate 

dynamic programming (Werbos, 1992a), where 
dynamic programming (DP) relates to the optimisa- 

Requests for reprints should be addressed to Richard Stuart 
Neville, Dept. of Electrical Engineering, Brunel University, 
Uxbridge, Middlesex UB8 3PH, UK. 

tion of  a utility function (u) in a noisy and non-linear 
environment. The method used to implement the 
approximation of  DP is called the adaptive critic 
methodology, where a chile is placed hierarchically 
above an action network which is being trained. An 
action network is a net that inputs current state 
information (xi or F or R) and outputs the action 
vector u(t). 

The adaptive critic's task is to produce another 
output  function J, given input stimuli from the 
external model F and a utility function U (Figure 
1), where J is termed the secondary or strategic utility 
function. Dynamic programming (DP) is used to 
maximise the function U over time by maximising the 
J function in the immediate future (Werbos, 1989). 
The adaptive critic is required to approximate DP by 
using F as an input to optimise J over a short time 
period and hence U over a long time period. The 
critic implements this by recording short-term 
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U(t) 

F<,) = J~t+ I) 

FIGURE 1. Diagrammatic representation of functional inputs and 
outputs of an adapUve critic 

fluctuations of F and using these and the utility 
factory U to maintain longer-term metrics (J) in order 
to advise an action network. 

The adaptive critic element is normally used in a 
control environment that requires temporal informa- 
tion in order to control a dynamic system. It may also 
be used for the more usual pattern recognition tasks, 
which we shall cover in the following paragraphs. 
Utilising the critic for these tasks still requires the 
optimisation of a longer term utility function U and 
the evaluation of a short-term strategic utility 
function J, where the utility function U may be a 
global mettle used to advise an action net performing 
a credit assignment task (Minsky, 1961). 

The format of the article is as follows; initially we 
introduce our area of research. Then we state our 
Rationale. The associative reward-penalty training 
regime is then introduced. Then we review the 
adaptive critic for semi-linear units. An introduction 
to logical neural networks is then given. The sigma-pi 
model is then presented. This is followed by a 
description of associative reward-penalty for sigma- 
pi networks. We then present a quantised adaptive 
critic. This is followed by a methodology for dealing 
with the quantised adaptive critic's enigma, which is 
the exponential growth of resources as the number of 
inputs to the critic increases. In the final simulation 
work we contrast the adaptive critic method with the 
more conventional associative reward-penalty para- 
digm. In this final work we also show that a version 
of the adaptive critic which utilises an "unbounded" 
internal reinforcement signal promotes optimal 
learning efficiency. 

2. RATIONALE 

The training of sigma-pi networks (Gurney, 1989) 
utilising associative reward-penalty (AR-e) (which is 
presented in Section 3) can be a time consuming 
process. One of the contributory factors for this may 
be the very limited band-width of information the 
global scalar reinforcement, r E {0, 1}, signal pro- 
vides when it is broadcast to the action network. The 
scalar value does not advise the action network by 
utilising secondary information such as past data 

obtained from the environment R, which may aid the 
net in its learning task. The (An_ e) algorithm has no 
means of facilitating the use of cause-and-effect 
information (Werbos, 1989) to make it possible to 
give credit to good actions more precisely than one 
could using an error driven reinforcement scheme 
alone (Werbos, 1989). We investigate the quantised 
ACE to enable us to increase the associative reward- 
penalty learning rule's efficiency and to enable us to 
re-formulate the ACE into a digital methodology so 
that it is hardware realisable. The following 
paragraphs relate how this may be done utilising 
what is known as an adaptive critic as an adviser for 
an action network (Neville, 1993; Neville & Stonham, 
1993). 

3. ASSOCIATIVE REWARD-PENALTY 
TRAINING 

3.1. Historical Overview of Associative 
Reward-Penalty 

The term "reinforcement" comes from experiments 
on animal learning in psychology. Reinforcement 
refers to increasing the probability of the occurrence 
of the correct response to a specific event. Barto 
(1992) states that the basic premise has root in the 
classical "law of effect" of Thorndike (1911). The 
associative reward-penalty (Aa_e) learning rule was 
derived from research by Barto in 1987, his basic 
work entailed using associative reward-penalty 
applied to a task, e.g., where nonlinear associative 
mapping are to be learnt by a feedforward network. 
Barto and Jordans' work of 1987 on associative 
reward-penalty (AR-e) followed research by Wil- 
liams (1986, 1987a, b) on reinforcement training 
methodologies. 

The initial research on RAM-based digital 
sigma-pi networks utilising the associative reward- 
penalty paradigm was carried out by Gurney 
(1989) and was extended by Neville and Stonham 
(1994a, b, c, 1995) and Neville and Stonham 
(1995a, b, c). Complementary work on similar 
models (i.e., pRAMs) was done by Gorse and 
Taylor (1990a, b, 1991), who also utilise the 
reward-penalty methodology. 

A unification of the sigma-pi model and the 
reward-penalty algorithm has been presented for- 
mally by Gurney (1992a, b, 1993). Investigations by 
Neville (1990), into the use of reward-penalty for on- 
board training of VLSI hardware implementation of 
sigma-pi networks, initiated the work of Hui et al. 
(1992a, b) into cascadable sigma-pi nets. Comple- 
mentary work in this area has been carried out by 
Clarkson et al. (1992), using the pRAM units of 
Gorse and Taylor (1990a). 
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3.2. The Basis of Associate Reward-Penalty 

The associative reward-penalty (AR-p)  algorithm 
utilises a binary (scalar) reward signal "r"  which is 
globally broadcast across a network. The reinforce- 
ment signal "r"  is then utilised by each unit in the net 
to determine their weight updates. The premise is that 
the stochastic nodes in the net are given credit, or 
reinforcement, if the net gives a "successful" output. 
The net is given a debit or penalised if its output was 
wrong (Minsky & Papert, 1969). 

The associative reward-penalty training algorithm 
has been used in a supervised manner on feedforward 
networks (Barto & Jordan, 1987). The networks were 
multi-layered, with input units which had clamped 
values specified by sources external to the network. 
The input units feed what were termed "hidden" 
units, i.e., they were not available to the outside 
world. The hidden units communicate with other 
hidden units in the net hierarchically above them. The 
final layer of hidden units, as there may be more than 
one, feed the output units. The output units are 
available to the outside world and are also known as 
"visible" units. 

Figure 2 shows a network of stochastic units in its 
training environment and the communication be- 
tween the network and its environment. The 
operation of the network and the environment is 
described as a set of steps: 

Step I. The environment randomly selects an input 
pattern for the network from a set of 
patterns. 

Step 2. Once the input has been selected an output 
action (pattern) associated with this CLASS 
of input pattern is also selected. The input 
pattern is presented to the net and, on a layer 
by layer basis, the activation passes through 
the network from the input to the output. 

Step 3. When all the units at the output of the net 
have selected their action, a reward signal 
"r"  is calculated. 

R e i n f o r c e m e n t  
s ignal  'r' 

b roadcas t  to 
all uni ts  

Inputs  

FIGURE 2. Stochastic network and training environmenL 

Step 4. Each unit changes its internal state according 
to some specified function of its current 
state, the action just chosen, its input, and 
the reward signal. 

3.3. Associative Reward-Penalty for Stochastic 
Semi-linear Nodes 

The intention of this section is to introduce the 
original concept of associative reward-penalty 
learning rules for stochastic semi-linear nodes. The 
input units, k, distribute the input stimuli to the 
hidden units which have real-valued inputs, Xk, each 
of which is associated with a weight, wjk, in a 
multiplicative manner. The resultant products from 
all the inputs are summed, to obtain the activation aj, 
and passed through a semi-linear function such as the 
sigmoid or squash function--this produces an out- 
put, yj. The hidden units of the net are stochastic in 
nature as the binary output, yj, is defined from the 
probability of firing [which is identical to that of the 
Boltzmann units, Hinton et al. (1984)]. Hence the 
hidden units' output are defined by 

P(yj = 1) = a(aj) o r  P(yj = 0 )  = 1 - t r ( a j ) .  (1 )  

The output units are deterministic semi-linear 
units identical to those of Rumelhart et al. (1986), 
whose output is given by: 

1 
y, = a(a,) = 1 + e-~,/---------'~ (2) 

where 

= F_, w,jy,, la) 
J 

Barto et al. (1987) trains the output units in the 
manner of Rumelhart et al. (1986), who uses a 
"delta", 6, rule. The delta rule adapts each output 
node, i, given wij is its weight, in the following 
manner 

A w , j  = ( y ;  - -  (4) 

where yi is the response of the deterministic output 
unit i to the input pattern; Yi* E [0, 1] is the desired 
response of unit i supplied by the teacher; 
a'(ai) =o, (a i ) ( l - a (a i ) )  is the derivative of the 
sigmoid function a evaluated at ai, and a is the 
learning rate constant determining the step size. 

One should note that, unlike the back-propagation 
error method, the error for a given input pattern is a 
random variable, due to the stochastic nature of the 
hidden units. 
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In order to train the hidden units an error metric is 
utilised to define the reinforcement signal 
" r E  {0,1}"; this is normally the inverse of the 
mean-square error, e0 [i.e., of the form given in 
Section 6.2 eqn (34)] of the output units. 

1 with probab i l i t y  1 - eo 

r = 0 with probab i l i t y  eo 
(5) 

The reward signal is then used to assign 
incremental or decremental changes to the weights. 

AWyk = S a[Yi-  tr(aj)]xk if r =  1 
 .aArp[l- Yi--a(aj)]Xk if  r = 0  (6) 

where a > 0 is the learning rate, which defines by 
how much the weight is incremented, whilst 
0 ~< A,p ~< 1 is a penalty coefficient that defines the 
amount the weight is decremented, Xk is the real- 
valued input and aj is the real-valued activation of the 
hidden unit. This leads to a non-symmetrical learning 
regime. It has been reported by Barto et al. (1987) 
that the lambda, A,p, term enables the algorithm to 
avoid "local minima". Gurney (1989) suggests that 
non-zero lambda introduces noise into the learning 
process and helps avoid absorption into "local 
minima". 

The stochastic nature of these nets, which leads to 
non-deterministic searching of the state space, is 
derived from the probabilistic interpretation of the 
activations of the hidden units P(Yj=  1 ) =  a(aj). 
Hence when the net's stochastic response is correct, 
i.e., when r--  1, then the weights are incremented in 
order to promote the probability of outputting the 
same response associated with a given stimulus. 

4. ADAPTIVE CRITIC 

The adaptive critic (Barto et al., 1983; Barto, 1992; 
Werbos, 1992a) in Figure 3 is placed hierarchically 
above another network, which it advises. The critic 
exploits cause-and-effect information; this enables 
credit to be given to good actions ( u ( t ) ) ,  more 
precisely than standard associative reward-penalty 
(AR-p) error driven learning (Werbos, 1989). The 

R(t) • Critic /~ U(t) 

t 
. . . .  i 

J 

_I Action r ..... - [ network ~ u0 ) 
l 

FIGURE 3. Adaptive critic advising an action network. 

adaptive critic element (ACE) supervises itself by 
detecting changes in the environment (R(t)) (Myers, 
1990). The guidance the ACE provides takes the form 
of a prediction (Barto et al., 1983) or utility function 
(Werbos, 1992a) which the ACE maximises over 
time. 

The critic may be used to optimise either a utility 
function, a performance index or a cost function 
(Werbos, 1992a). In our case, the critic optimises a 
reinforcement signal which is used to advise an action 
network of changes in the value of a performance 
criterion. This type of predictive system is commonly 
used in control theory (Barto et al., 1983). 

In Barto et al.'s original research (1983), the critic 
or functional network outputs an estimate of J, which 
is used in the reinforcement of lower-level networks. 
Their original functional network, in what has been 
termed their two-net problem (Werbos, 1989), 
estimates J and is called a "critic", because its main 
function is to criticise or evaluate the results 
produced by the action network, in order to permit 
adaptation of the action network. Barto's method 
may be thought of as a temporal difference (TD) 
method (Werbos, 1992c) as Barto utilises data that 
relate to past and present events to enable a payoff 
metric to be optimised, where the payoff was used as 
a "prediction" or "expectation" of a future reinforce- 
ment (Myers, 1990). The prediction values are 
calculated with reference to the ACE's input 
eligibility traces, where the eligibility is a trace of 
events over time (Barto et al., 1983). 

The eligibility trace, Figure 4, may be described as 
follows; given a pathway between two neurons, the 
pathway reaches maximum eligibility a short time 
after the occurrence of a non-zero input signal on 
that pathway. The eligibility metric has been used by 
Barto et al. (1983) to update the weights of their 
action network, where the eligibility of a pathway 
relates to what extent the weight on that input 
pathway should be modified. 

The input eligibility traces, (~), are averages, 
where the bar (-) denotes an exponential average 
over time. The relationship relates the future 
eligibility trace, ~(t+l), to the present eligibility 
trace, £(t), and the present input, xi(t),  in an 

l 

Input [ 

0 
T i m e  P 

I - - I  
ElegibilitYtrace / %1...] 

I L_ 

FIGURE 4. Diagrammatic representation of input eligibility trace. 
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exponential relationship defined by eqn (9), which is a 
recurrence relationship. The adaptive critic we utilise 
predicts an internal reinforcement signal based on the 
present external reinforcement signal and its past and 
present prediction values. Each input to the adaptive 
critic element is given its own trace. These input 
eligibility traces increase when the input is active and 
decrease to zero with time in the absence of future 
activity, hence the most recently increased eligibility 
traces would affect the production of  an expectation 
most strongly (Myers, 1990). 

The algorithmic sequence the adaptive critic 
follows is: given an external reward signal at time 
T, the critic then deduces an internal reinforcement 
based on the external reinforcement, the present and 
past predictions. The future prediction value is then 
derived as a function of the input eligibility trace. 
Finally all the input eligibility traces are updated. 

4.1. Complementary Work 

The initial research of Barto et al. (1983) on 
"neuronlike adaptive elements" utilised an associa- 
tive search element (ASE) as the action network. The 
ASE was advised by an adaptive critic element 
(ACE). The ACE receives the externally supplied 
reinforcement signal which it uses to derive an 
improved reinforcement signal which it sends to the 
ASE. The central idea behind the ACE algorithm is 
that predictions are formed that predict not just 
reinforcement but also future predictions of  reinfor- 
cement. 

The ACE, Figure 5, has a reinforcement input 
pathway, n pathways for non-reinforcement input, 
and a single output pathway. The external reinforce- 
ment, r(t), denotes the real-valued reinforcement at 
time t, and let X i ( t )  , 1 <~ i <~ n, denote the real-valued 
signal on the ith non-reinforcement input pathway at 
time t. Each non-reinforcement input pathway, i, has 

External 
reinforcement 

X l X 2 Xn Internal 
reinforcement 

FIGURE 5. Adaptive critic element used by Barto. 

a weight with real-value vi(t) at time t. The internal 
reinforcement output, fCt), is the improved reinforce- 
ment signal that is used by the ASE in place of  r. The 
ACE determines f(t) by evaluating a prediction, P(t),  
of eventual reinforcement that is a function of the 
input vector, X(t). 

The prediction is given by: 

n 

e(') = E vi(t)xic,). (7) 
i=| 

Then the weights, vi, are updated to enable P(t) to 
converge to an accurate prediction. The updating rule 
Barto used for the weights of the ACE was: 

v,(,+ ,> = ~,c,> + ~[ 'c ,>  + 7Pc,> - vc,-,>]x,c0 (8) 

where 0 ~</3 ~< 1 is a positive constant determining 
the rate of change of  vi and 0.0 < 3' ~< 1.0, is a 
constant that has been called a "discount factor" by 
Witten (1977), which enables the eventual extinction 
of  predictions in the absence of external reinforce- 
ment. The prediction is self-sustaining if 3' = 1.0, but 
if it is less than 1.0 the prediction decays in the 
absence of  external reinforcement, Barto et al. (1983) 
used a discount factor of  0' = 0.95 for his research. 

The trace, ~i, acts as a type of eligibility trace. The 
input pathway gains positive eligibility whenever a 
non-zero signal is present on that pathway. The input 
eligibility trace was computed using the following 
linear difference equation: 

$i(,+,) = Aaee$i(0 + (1 - Aace)X~(t) (9)  

where Aace,0 ~< Aace ~< 1 determines the trace decay 
rate and xi(o is the present input. The ACE's output, 
the improved or internal reinforcement signal, was 
computed from the past and present predictions as 
follows: 

}~(t) = r(t) + D'P(t) --  P(t-I)- (lo) 

The f was substituted for r, the original external 
reinforcement, when the weights of  the action 
network were updated. The pole-balancing problem, 
which Barto (1983) uses to demonstrate the ACE, 
utilised an r of  zero throughout the training steps and 
it became -1  when failure occurred, i.e., the pole 
would not balance. 

Werbos (1989, 1990, 1992a, b, c) re-evaluates the 
premise of  the adaptive critic, to relate the 
methodology to a wider area of research. 

Werbos observes that the adaptive critic method 
approximates dynamic programming, Figure 6, i.e., 
it is used to maximise a utility function in a noisy, 
non-linear environment. He denotes the critic's 
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Model of Utility 
reality (F) function (U) 

1 1 
Dynamic 

programming 

Secondary or strategic 
utility function (J) 

FIGURE 6. Diagrammatic representation o! dynamic program- 
ming. 

inputs, R(t ) (or b'), as the current description of 
reality (xi input vector) and the utility function U(t) 
(which is equivalent to the reinforcement r). The critic 
outputs an estimate of the future utility, J, across 
(t + 1) future time, where dis a payoff metric which is 
used with the adaptive critic (J is optimised over time) 
and where U is maximised over time by maximising J 
in the immediate future. Werbos' research in this field 
(1989, 1990, 1992a, b, c) has extended the basic 
premise of the adaptive critic and he has presented 
several variations on the adaptive critic theme which 
use error back-propagation as the means of 
evaluating the utility function. 

5. INTRODUCTION TO LOGICAL NEURAL 
NETWORKS 

The majority of researchers into artificial neural 
networks utilise neuron models that implement a 
linear sum of the weights times their input stimuli. 
This sum is then passed through an activation-output 
function which is normally a sigmoidal transfer 
function. These units are termed "'semi-linear" as 
the shape or "linearity" of the transfer function is 
defined by p [re. Section 6 eqn (25)] which is a positive 
parameter that defines the shape of the curve. This 
may be set to a hard-limiter if p --, 0 or with p ~ 0.4 
the curve becomes "semi-linear", where both the 
input and output of these units are real-valued. 

A different perspective has been taken by some 
researchers (e.g., Aleksander, 1989a, b, 1990; Gorse 
& Taylor, 1990a, b, 1991; Gurney, 1992a, b, 1993; 
Neville & Stonham, 1994a, 1995; Neville et al., 1995a, 
b, c) who use what may be specified as "digital 
networks", which have the ability to implement the 
node functionality in hardware using random access 
memories (RAMs). The main driving force behind 
their research is derived from the fact that the 
mainstay of computational devices used today are 
"digital" in nature. These digital computational 

devices process analogue information by first 
digitizing the input (e.g., coding the analogue signal 
using an analogue to digital (A/D) converter) then 
processing the signal and finally converting the digital 
signal back to analogue (e.g., decoding the digital 
signal using a digital to analogue (A/D) converter). 
The whole ethos of these RAM based units is that 
they enable Boolean functions to be implemented as 
look-up tables in a RAM. Hence logic nodes' inputs 
and outputs are binary. 

The basic difference between logical nodes and 
semi-linear nodes, which sum the product of the 
inputs and their weights, is that logical nodes respond 
to their input patterns in addressable locations; the 
locations contain either a logical "1" or "0", which is 
set/reset during a training phase. The output is then 
defined as the binary value stored at the location. 

The following paragraphs give a brief overview of 
the history of logical neural networks and sigma-pi 
(probabilistic) neural networks. 

5.1. Introduction to Sigma-Pi (Probabilistic) Neural 
Networks 

The generalisation of the logical node to the multi- 
level probabilistic unit (Myers, 1989) is now 
presented below. 

The diagram depicted in Figure 7 shows a simple 
three-state probabilistic logic node (PLN) (Kan & 
Aleksander, 1987; Aleksander, 1989a, b; Neville & 
Stonham, 1992, 1993b). Figure 7 introduces the 
concept of a site containing a probability value that 
defines the output, P(Y= l I#)= S~. For a three- 
state unit (one should note that the term "state" 
implies the number of discrete states the site-value of 
a unit may take) the site-values are S, E {0, u, 1} 
where 

e ( ¥ :  , I s ~  --  0) = 0 
e(Y= l lS~ = u) = 0.5 
e(Y= l l S  , = 1) = 1 

defines the three possible states per site, of the basic 
probabilistic logic node. 

This may be represented in hardware terms as a 
storage location (in the case of the three-state unit) in 
a RAM which stores the site-value, S~. Then 
S~, E {0, 0.5, 1 } in binary representation is 
S~,bM , E {002,012, 102}, i.e., three values, note later 
in the article we term this the machine-quantised 
representation and designate it Sin-q. 

We can now generalise the three-state unit to a 
multi-level logical node, e.g., for a five-state unit the 
site-value S~, takes the following probabilities {0, 
0.25, 0.5, 0.75, 1} of outputting a logical "1" if the 
output function is linear. If we interpret the site-value 
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" ~  values at sites 
of hypercube 

FIGURE 7. The elmple Ihree-state probablllstic logic node. 

as ranging over a set of discrete levels, 
Sm ~ { - 2 , . . . , + 2 } ,  where Sm is represented in 
polarized notation, the output functions for the 
linear and sigmoidal cases is depicted in Figure 8. 

The more important issue is that these multi-level 
units have had their functionality described mathe- 
matically by Gurney (1989, 1992a, b, 1993), they are 
then termed sigma-pi units (the notation is described 
in the following paragraphs). The important aspect of 
presenting a mathematical representation, which can 
deal with real-valued inputs and outputs (e.g., 
analogue or continuous valued inputs), is that one 
may analytically prove learning convergence in a 
supervised regime, such as associative reward- 
penalty and back propagation of error. The 

mathematical foundation of the sigma-pi model is 
covered in the following section. 

6. THE SIGMA-PI NEURON MODEL 

The neuron model we utilise has previously been 
termed a sigma-pi unit, Figure 11 (Gurney, 1989, 
1992a, b, 1993), these units are similar to pRAM 
units (Gorse & Taylor, 1991) and as they are RAM 
based they may be placed in the same category as 
PLN units (Aleksander, 1989a, b). 

The foundation of the research in this article is 
based on the use of an artificial neuron model known 
as a sigma-pi unit. The model was derived by Gnrney 
(1989) from a mathematical description of the 
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FIGURE 8. Output function five-state multi-level logic node. 
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FIGURE 9. Simplistic structural details of a s lgma-pi  cell, for analytical visualisation. 

functionality of  these devices. We start by visualising 
a basic unit, shown in Figure 9. 

Here x E { x l , x 2 , . . .  ,x i}  is a binary input vector 
which may be represented as a set of  bits in positions 
xl to xi. The  site address, # E  {#1,#2 . . . .  ,#i}, is 
represented by a set of  bits in positions #1 to #i. The 
site-value, S~,, is addressed by the binary string #. 

The functionality of  these sigma-pi units has been 
described mathematically by Gurney (1989) as 

y = S~, (1 + fz,.~,) (11) 
/~ i=1 

where $ denotes polarised notat ion ~ E { -1 ,  1}, 
# E {--1, 1} and S l, denotes unpolarised notation, 
i.e., in binary S~,~,, E {0, 1}. The output y is in 
unpolarised notation, giving a binary representation 
y E {0, 1 }. This may be cast in the more normal form 
of  an activation (which in the semi-linear case is a 
linear sum-of-weights function) and an output  
function. 

The activation is 

I E  
i=n 

a = S. H (1 +/2i$,) (12) 
# i=1 

where a = y, hence 

1 
y = ~ ( a  + 1). (13) 

One should note that the site-value is represented in 
its polarised form S~, and )7 which take the values 
{-1,1}. 

We now present the sigma-pi models, which in the 
case of  our research take the form of  stochastic 
models as the site-values are interpreted as prob- 
abilities. The input, xi, may also be interpreted as the 
probability of  a "1"  appearing at the ith input to the 
node. The output,  y, is defined by a probabilistic 
process which is presented in the following para- 
graphs. 

The first model is termed a time integration node 
(TIN)  by Gurney (1989), and contains a hypercube 
of  sites which feeds a bit stream or activation stream 
which is then interpolated through an output 
function, the T IN  is shown in Figure 10. 

A time integration node stores site-values in a 
hypercube, which is addressed by an i bit input 
vector. The input vector addresses a site, #, which 
contains a site-value, S~,, which stores a value 
S l, c { - S i n  ..... + Sin} which we interpret as a quan- 
tised number for reasons of  hardware implementa- 

1 
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_ _ ~  stream 
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Output 
function 

Output 
stream 

I ........... Ik- 

. . . . . .  ~ y = 1 7  . . . . . . . . . .  

FIGURE 10. The time Integration node (TIN) s igma-pi  unit. 
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tion, but it may also be a real-valued number. The 
site-value is passed through a bit generator function, 
which fills the activation stream with a bit, "b".  The 
stream is then used to estimate an activation value, 
which is then passed through an output  function 
(which may be linear or sigmoidal) in order to 
produce the output. 

The TIN's  activation may be defined as 

a = 1---~ZSt`P(# ) = (St')Sm (14) 
t` 

when 

P(#) = ~'~ ]-[ (1 + #izi) (15) 

given 

Pt` (xi) = 1 (1 + Izizi) (16) 

where a is the activation which is found by 
summation of  all the addressed sites S u times P(#)  
the probability that the site address was visited, 
S u x P(u). The new input address is formed from a set 
of  Boolean variables, {Xi}. These are defined via a set 
of  probability distributions determined by zi. 

P , ( x i ) = l ( l + z i )  and P o ( x i ) = l ( l - z i )  (17) 

where zi, the input probability distribution, defines 
the probability of  the input xi. 

Hence the probability Pu(xi) that xi is equal to the 
ith component  of  the site address/z  is given in eqn 
(16), when P(#) gives the probability that the current 
input address locates site #, noting that (.) denotes an 
expectation value and - 1  < a < 1.  

I f  we define the current input address as r/, then use 
S o to generate "a" ,  the new activation stream bit is 
given by 

1 (Sn /Sr  a + l ) .  P(b ---- lit/) = (18)  

Over many time steps, if the input vector is held 
constant 

(b) = e ,  (b) : ~ ~ - 1 (19) 

then 

If  N! is the number of  ls in the activation stream 
which is L bits long, then an estimate for (b) is ~ .  

An estimate a* for the activation is 

N I  
a" = 2 -  2 -  - 1. (21)  

This is then used to obtain an estimate, y* = a(a*), of  
the output  y in the case of  a sigmoidal output  
function or y* = (a*) in the case of  a linear output 
function. This in turn defines a distribution on a 
Boolean random variable y, by P1 (y) = y*, which is 
used to communicate the output  to the next layer. 
Under stationary conditions, the stream's output  bits 
generated in this manner then estimate the value of  
"y"  for this node. 

The T IN  may be utilised for continuous valued 
inputs where the real-valued input defines the 
probability (zi) of  entering a ' T '  onto an input xi 
of  a node. One should note in our depiction of  the 
TIN the site-values are quantised, hence the linear bit 
generator is quantised into multi-levels as is the 
sigrnoidal output  function, this is due to quantisation 
of  a* to allow these models to be hardware realised. 
This method has been generalised to enable the 
sigma-pi units to operate with real-valued site-values, 
which are termed an "analogue model",  we in fact 
utilise a unit known as a "stochastic model". 

When the T IN  sigrna-pi unit is configured into a 
multi-layered net topology a change in the input 
probabilities means that the new outputs at the final 
layer will be estimated after "'mL" time steps, where 
"m"  is the number of  layers in the network. 

A training regime (i.e., associative reward-penalty) 
requires correlations between short term fluctuations 
in the output  of  the nodes in subsequent layers to 
provide information for training, we utilise the non- 
linearity a(.) in the output stream bit generator for 
this reason. This may not be required if, for example, 
we were using a TIN to perform an approximation to 
a function, e.g., a polynomial function, and obviously 
if we required a linear unit we would utilise a linear 
output function. 

Another  type of  model exists which we will term 
the "direct output  node" (DON),  as it does not 
utilise the bit stream to provide an output. With this 
the activation in the analogue model is 

a = a(St`) H (1 + fiiz,) (22) 
t` i = 1  

so that in the stochastic model 

a = ~-~a(Su)P(# ) : (o'(St`)). (23) 
a = 2 ( b )  - 1 = (b-) .  ( 2 0 )  t` 
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The output is just put equal to the activation "a"  
and 

P ( y = l l 0 ) = ~ ( S ~ ) .  (24) 

Hence in the TIN's  case y =  a ( ( S u / S m ) )  whereas 
in the DON y = (cr(Su)) .  The stochastic model of  the 
D O N  is depicted in Figure 11. If  one requires a linear 
interpretation of the output the cr notat ion may be 
dropped. 

The sigmoidal function a(Si, ) is defined as 

= 

1 + e-S"~" (25) 

where p is a positive valued parameter  that 
determines the shape of  the curve, re. the start of  
Section 5. 

The DON is a simplified version of  a T IN  with no 
activation stream, so the site-values are only 
processed through the output functions to any 
subsequent layers and output  streams. The site- 
values in the D O N  are quantised and if the output 
stream is not  required as a stochastic representation 
of  the nodes' output  (activation), then the resultant 
model is the same as the multi-level probabilistic logic 
node ( M P L N )  of  Myers and Aleksander (1988). 

In our research we use the stochastic model direct 
output  node (DON).  The output behaviour of  these 
units is similar to that of  the Boltzmann units of 
Hinton et al. (1984, 1985). The direct output  node is 
so called as it produces an output directly from the 
site-value stored at the site-address defined by the 
input vector and not from an activation stream which 
the TIN utilises to obtain an output. 

6.1. The Quantised Model and Low-Level Machine 
Representation 

For  our implementation all site-values are quantised, 
denoted "q".  This enables the sigma-pi unit to be 
hardware realised, hence the site-value is divided into 
D discrete levels, where 

G, e {-s in, . . . ,  + s . }  

and, hence, there are 

(26) 

levels. 
This leads to the interpretation of  Su as equal to 

q 

& = K (28) 

then 

G ,  = {nln = --Sr,, . . . .  , --1,0,+1, . . .  ,+Sin} (29) 

hence if S m =  5 then 

G, = {nln = - 5 , . . . , - 1 , 0 , + 1 , . . .  ,+5} (30) 

giving 

S~,, = kS,,,] = {n'ln' = - 1 , . . . , - 0 . 2 , 0 ,  +0.2,... ,+1}. 

This may be represented in hardware as: 

S~_,  = {n"ln" = 0, . . .  ,Sin,... ,2S,} 

(31) 

(32) 

D = (2Sin + 1) (27) 
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which we term the machine-quantised ( m - q )  
representations, which is normally stored in binary 
form, which for Sm = 5 is 

S~_, = {nOln" = 00002,...,01012,...,10102} (33) 

which is the low-level machine representation of  the 
site-value. 

6.2. Associative Reward-Penalty for Sigma-Pi Units 

In order to define a reward-penalty signal " r "  [refer 
to Section 3.3, eqn (5)] for sigma-pi units, we first 
introduce the mean-squared output error term: 

1 i=l, 2 

e o = ~ E [ Y ; - t r ( S i ~ ) ]  
v i = |  

(34) 

where [.]2 is the square error per input stimuli, defined 
on the output-- this  is summed over all N~ output 
units or visible units. The sum over the set I~ of  these 
output units. The error is the difference between the 
target response, Y~ e {0, 1 }, of  a stated output for a 
given input/output pattern pair and the sigmoidal 
value of  the site o(si '~,  where # specifies an address 
on unit ~s input hnes. The scalar reward is defined 
probabilistically by eqn (5). 

The site-values of  the sigma-pi units are adapted 
dependent on the reinforcement value, r, for each 
node, j, for input address # then 

f a[$ q - o(/~)] if r = 1 
AS~ ( a s )  ~Arp[1 -- In -- ~ ( S ~ ) ]  i f  r = 0 

where a > 0 is the learning rate and 0 I> Arv /> 1 is 
the penalty coefficient. 

6.3. Training Output Units 

The output units are trained using a delta rule, where 
the addressed site, #, of  output  node, i is updated 
using: 

f a[Y / - a(S~)] if r' = 1 (36) 
AS~ : [ ~A,p[1 - Y~ - a(S~) l if r" = 0 

where the reward signal "r/ ' '  for each output unit i is 
derived from the unit's output  error 

g0= [Y[ - ~(S~)] 2 (37) 

where Y~ E {0, 1 } is the target response for the unit. 
A different approach is to use the delta rule of 

Widrow and Hoff  (1960), where the output units are 
adapted with: 

O" i (38)  

The adaption technique above is a symmetrical 
learning rule, our methodology utilises a non- 
symmetrical learning rule for updating of  visible 
and hidden units, as the noise term A is then utilised 
to avoid absorption to sub-optimal states. This 
philosophy is also followed by Gorse and Taylor 
(1990a, b), but they utilise separate independent 
reward and penalty signals. 

6.4. Real-Valued Associative Reward-Penalty AR- p~ 
In the preceding section we have presented the 
standard AR-e  training regime which utilises a 
binary reinforcement signal " r  ~ {0, 1 }". In order to 
evaluate the effects of enlargement of  the reinforce- 
ment signals bandwidth, we utilise the real-valued 
reinforcement training regime of  Barto et al. 
(1987). This method is utilised to enable us to 
compare the real-valued Associate Reward-Penalty 
training rule with the quantised Adaptive Critic 
methodology presented in the preceding para- 
graphs. 

The original Associative Reward-Penalty of  
Barto (1987) utilises a scalar reinforcement signal, 
r E {0, 1}, defined in (5) which is probabilistically 
interpreted from the output error. Barto and 
Jordan (1987) call this type of regime the "'P- 
model" AR-e  rule. To enlarge the bandwidth of  the 
information globally broadcast to a network, a 
real-valued reinforcement was utilised 
0.0 ~< r ~ ~< 1.0 given by 

r ~ = 1 - e0 (39) 

where e0 is defined in eqn (34). Barto and Jordan 
(1987) calls this type of  regime the "S-model" AR-e  
rule. 

The real-valued reward-penalty A~_ e ~ algorithm 
for each node j ,  for input address # now becomes: 

AS/~ : c ~ [ Y J - a ( ~ ) ] r  ~t + CtArp[1 - YY- o'(/~)] ( 1 - r ~ ) .  

(40 )  

The A~_ e rule is non-symmetrical update rule if  
0.0 ~< A, e ~< 1.0, which allows both reinforcement and 
penalisation to affect the update process simulta- 
neously. 
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6.5. Quantised Sigma-Pi Model Training and Noise 

In order to approximate the expectation of  AS~, over 
time, the fractional component  of  A S  u is interpreted 
as a probabilistic component.  Then the site changes 
in the quantised model are: 

AqS u = I,, + Fu (41) 

where Iu is the integral part  of  the left hand side 
(LHS), formed by truncating the A change in the site- 
value; Fu is the remaining fractional part. 

Then 

AqSl~ = I u + 6S# (42) 

where 6S u is a unit increment or decrement made 
stochastically with probability [F~[. That  is 

P(rS u : + 1) : 1[1 + sgn(ASu)][F I 

P(rSu = - 1) = 1[1 - sgn(mSu)]lF I 

6S u = 0 otherwise 

(43) 

where F is the fractional component  and "sgn" is the 
sign of  the delta change ASf, (i.e., if A S  u = 1.25 then 
sgn(AS~)  = +1 and if A S  u = -1 .6  then 
sgn(AS~)  = --1). 

This gives the required expectation 

( [~qSla) ~- Slj or I~qalJ -~- /~Sl~ -~- ?lq (44) 

where nq is a noise term with zero expectation. We 
observe that the effective noise nq may be increased or 
decreased dependent on the value of S,, and p [i.e., 
eqn (25)]. When Sm ~ oo the noise term nq ~ O, but 
by selection of  an S,,, = 10, say, we may obtain 
beneficial results from the noise term. 

We may also set the slope of the sigrnoid, which 
previous researchers have set to a high slope p = 0.04 
(Penny et al., 1990), to a semi-linear curve, i.e., 
p = 0.3 and hence more noise may also be introduced 
into the incremental learning regime. This hypothesis 
has been extended in the light of Gullapalli's (1988) 
work, as he postulates that by keeping the values of 
the units output, Y, from saturating (i.e., going to 
their maximum values, as in the case of  Y pertaining 
to a real number) one may enhance learning 
efficiency. In our case by using p = 0.3 one does not 
allow the a(.) to asymptotically reach its maximum 
value, hence the difference term [ Y -  a(S~,)] never 
goes to zero (which it would do if p = 0.04, where it 
has a very narrow non-asymptotic region). One 
should note by setting p = 0.3 we obtain a 
probabilistic output even when the site-value reaches 

its extreme asymptotic values. This may also be 
another  reason why we obtain more efficient learning 
when p = 0.3. Initial studies of  the variation of  Sm 
and p were carried out by Myers (1989), where a 
value of  S m =  5 (D = 11), gave optimal results when 
tested on seven-bit parity and simple 16-pattern 
generalisation tests. 

The reader should of  course be aware that 
functions (35) and (36) will be clipped at their 
extreme values due to the nature of  the bounding of  
S# E {-am, am}, but this may be overcome if one 
multiplies the whole of  the right hand side (RHS) by 
sigma primed. 

6.6. Algorithmics of the AR-p Training of Sigma-Pi 
Networks 

The algorithm presented in pseudo-code for associa- 
tive reward-penalty training of  sigrna-pi units is 
detailed below. 

clamp training vector 
for each layer do { 

latch addresses 
generate new site-values 
generate new output  bits 

} od 
calculate error e0 
generate reinforcement bit r 

for each unit in each layer do { 
calculate AS~ 

} od 
update site-values. 

Making error estimates with eqn (34), on the 
ascent of  r [defined in Section 3.3, eqn (5)], then using 
eqn (35) for the hidden units and eqn (36) for the 
visible or output  units updates. 

One should note that this is a "sequential" training 
method, where each vector is presented, delta changes 
in the site-values A S  u are made, then the next vector 
is presented. This differs from the methodology used 
by Rumelhart  et al. (1986) who use a "batched"  
training update method, whereas we only require 
errors on a per pattern basis or "sequential" training 
update method. 

7. T H E  QUANTISED ADAPTIVE CRITIC 
E L E M E N T  

In the subsequent work on the adaptive critic, we 
utilise the formalised conventions which we have 
previously used for the sigma-pi model, refer to 
Sections 6 and 6.1, which are: 

(1) all stimuli to the action net and the adaptive critic 
element are binary, 
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(2) the binary input vectors, which stimulate the 
critic, address site locations, 

(3) the site-values stored at the locations may be 
viewed as values stored in n-tuples, 

(4) the stored site-values are quantised. 

The following paragraphs formally introduce our 
adaptive critic methodology, in order to utilise the 
sigma-pi convention of  notation, for tasks requiring 
temporal predictions such as control systems or 
sequential tasks that require temporal information 
(Barto et al., 1983; Myers, 1990). Then we put 
forward an adaptive critic element (ACE) for the 
more orthodox tasks, such as those carried out by 
feedforward networks. Werbos (1990) previously 
stipulated that the adaptive critic can be used to 
adapt conventional networks that perform tasks like 
pattern recognition. In the succeeding work we 
extend Barto's (1987) associative reward-penalty 
(AR-p) paradigm to incorporate Barto et al.'s 
(1983) research and introduce an adaptive critic 
which is connected to a sigma-pi network (action 
network), in order to aid the action network while it 
is being trained. 

7.1. The Quantised Adaptive Critic for Sigma-Pi 
Networks 

We now formulate the mathematical notation of an 
adaptive critic for sigrna-pi nets. 

The adaptive critic element receives an external 
reinforcement, as used in the standard AR-p (re. 
Section 3), derived from an action network's output 
(re. Section 3.3), which is a scalar signal. 

In order to evaluate the internal reinforcement, 
~(t), we calculate: 

r(t) = r~ ,) + 7/'(,) - P(,-,). (45) 

The prediction, P0),  relates to the present 
prediction while P(t-t) is the past prediction--these 
values are stored in a quantised manner, where 
P(.) E {0 , . . . ,+Pn} ,  giving D = P n + l  discrete le- 
vels, which are stored as q bit numbers (e.g., if 
Pn = 8 then P(.) E {0.125nln = 0, 1 , . . . ,N}  where 
N = 0.125/0.125 --- P~). The multiplying coefficient 
0 . 0 < 7  ~<1.0 has previously been termed the 
"discount factor", which in our case may be 
thought of  as a means of  reducing the effect the 
most recent prediction has on the evaluation of  
~(t), if 7 < 1.0. The reinforcement value 
r ' E  { - 1 , + 1 }  denotes a scaled reward [re. Section 
7.2, eqn (48)], which enables the predictions, P(.), 
to incrementally increase from zero to one and also 
be decremented from one back down to zero. 
Note, to use ~(t) with A R - p  w e  must re-scale it [c.f. 
eqn (52) in Section 7.2]. 

The prediction is updated by: 

AP(t+t) = flf(t)$,(t) (46) 

where 0 < /5  < 1 is a rate coefficient which defines by 
how much the prediction is incremented or decre- 
mented. The input eligibility, ~(0,  is interpreted as; 
given an "g '  bit input vector {Xl, x2 , . . . ,  xi}, which 
addresses location "v" in an eligibility n-tuple, giving 
an eligibility value ~,(t)E {0 , . . . ,+$~} ,  that is 
specified as a "q" bit number, having D = gn + 1 
discrete quantisation levels (e.g., if xn = 16) 
then ~(.) = {0.0625nln = 0, I , . . . ,  N} where 
N = 1.0/0.0625 = ~n- 

The input eligibility trace is updated by: 

X=(t+,) = A, ceX=¢0 + (1 - Aace)X,ft) (47) 

for all input addresses 0 ,<< u ~< r/, where r/equals the 
maximum input address (e.g., for an 8-tuple 
r /=  (28) - 1  or 255 decimal or FF  hexidecimal), 
and where xv(t) is a binary trigger for the eligibility 
trace, when site "v" is addressed xv(t) = 1 (i.e., where 
input address v equals the n-tuple address u) and all 
other non-addressed traces are updated with 
x~,(t) = 0, and where 0 < )kaee < 1 is a positive 
constant determining the decay rate. The input 
eligibility figures are now viewed as quantised values 
stored as a set of  traces in a n-tuple, which are 
updated every time the action network carries out a 
"forward pass" operation. 

The above formalises the adaptive critic to what 
we will term the "quantised adaptive critic element" 
(QACE). However, the above quantised critic is 
usually utilised for tasks where temporal information 
is being used. The paragraphs below instruct one how 
the QACE rule may be amended, to utilise the QACE 
in the more normal "static" mapping situations. 

7.2. Quantised Adaptive Critic Element for Pattern 
Mapping Tasks 

The QACE we define here carries out static mapping 
tasks, which is one that maps input vector X to 
output vector Y, where Ybelongs to one o f k  different 
classes. The quantised adaptive critic stores the 
variables that it utilises in the same manner as the 

Input 
address 

latch Address Divide 
xl _ ~ x~ by Pn 

P~qi 
Quantised prediction 

FIGURE 12. Diagrammatic representation oG the prediction 
values stored in an n-tuple. 
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sigma-pi unit (re. Section 6.1). The QACE is 
addressed by an i bit vector, defined by the input 
vector { X l , X 2 , . . . , x i } ,  which addresses a location 
defined as address v. 

The vector v addresses three locations in the ACE 
in parallel, these site-values store the prediction 
values P~(t), Pv(t-l) and x~(t) the eligibility values, 
which are all q bit numbers, of  the type defined in 
Sections 6.1 and 7.1. The method of  storing the 
predictions (which is also utilised for storage of the 
eligibility values) is diagrammatically depicted in 
Figure 12. 

The QACE utilises the standard external reward, 
r(t), which is given in eqn (5), Section 3.3, where 
r(t) E (0, 1} is a binary scalar value. The reinforce- 
ment is then scaled, to enable one to obtain a 
reinforcement which may be a negative - 1 or positive 
+1 value, in order to calculate a prediction of the 
reinforcement Ap~ value that increases and de- 
creases, the scaled reinforcement is given by: 

r~t) = (2 x r(t)) - 1. (48) 

We then obtain a bivalent reinforcement of  the type 
used by Barto et al. (1983), where r '  E {-1 ,  +1}. The 
scale reward signal is then used to derive an improved 
or internal reinforcement signal, given by: 

r(t) = r~t) + "YPv(t) -- P~(t-I) (49) 

where Pv(t) is the present prediction and P~(t-l) the 
past prediction. It should be noted that this is not the 
same as Barto's (1983) original work, where he uses 
the prediction values P(t) and P(t-l) .  We use the 
present and previous prediction values for the given 
site address v. The multiplying coefficient 
0.0 < 7  ~< 1.0 has previously been termed the 
"discount factor", re. Section 4.1. 

The prediction value is updated by: 

APv(t+I) =/~f(t)$,(o (50) 

where 0 </~ < 1 is a positive constant determining 
the rate of change of  Pv(.). All the input eligibility 
traces are updated using: 

~,1,+1> = ,~,co~,~,) + (1 - ~,~)x,<,) (51) 

for all input addresses 0 ~< u <~ r/, where r/ = the 
maximum input address (e.g., for an 8-tuple 
r /=  (28) - 1  or 255 decimal or FF  hexidecimal), 
and where )~aee, 0 < ~ace < 1 determines the elig- 
ibility trace's decay rate. 

The binary value, x~, is a trigger for the eligibility 
trace, and when the site v is addressed xv = 1 and all 

other non-addressed traces are updated with 
xu#v = 0. The internal reinforcement, f(t), is then 
re-scaled 

. 1 
r(t) = ~ (r(t) + 1.0) (52) 

which denotes a quantised reinforcement 
r~t E {0.0, . . . ,  1 0}, that is termed the "bounded" 

. " * * 

reward signal r(t ) [e.g., rtt ~ E {0.125nln 
= 0, 1. , . . .  ,N} for all our experiments" Pn = ~n = N, 
we set N equal to 8]. It is termed "bounded" 
reinforcement signal as the re-scaled reward (52) is 
limited to the maximum and minimum values of 
Barto's (1987) scalar reinforcement (i.e., mini- 
m u m = 0  and max imum= 1). When the internal 
reinforcement is not limited to these extremes it is 
then defined as an "unbounded"  reinforcement 
signal, r~t), which denotes a quantised reinforcement 
r~t ) E { - 1 .0 , . . . , + 2 .0 } ,  which permits penalisation 
even when the penalty coefficient, Arp, in the 
associative reward penalty training regime is zero, 
i.e., Arp = 0. 

The sigma-pi unit's addressed sites, given node j 
and site address #, are then updated using: 

(53) 

The reader should of  course be aware that the 
function (53) will be clipped at its extreme values due 
to the nature of the bounding of S~, E { - S m , . . . ,  Sin}, 
but this may be overcome if one multiplies the whole 
of the right hand side (RHS) by sigma primed. 

7.3. Example Evaluation of  the Internal Reward Using 
the Adaptive Critic Elements 

The ACE methodology utilises one ACE per net, as 
per the Barto et al. (1987) initial research. This is 
based on the premise that the ACE is utilised to 
predict "r" ,  which is derived from the input 
eligibilities obtained from the environment R. 

In Figure 13 we present a diagrammatic representa- 
tion of  an example evaluation of the internal reward 
signal using the ACE. In time period t the external 
reward, r(t), the past Pv(t-1) and present Pv(t) 
predictions are r(t) = 0 and P,(t) > Pv(t-1) .  Then the 
internal reward, f(t), defined by eqn (49) calculates a 
pseudo-penalty value (i.e., the internal reward is not 
equal to minus one) which means that the internal re- 
scaled reward r~t)is a non-zero reinforcement signal. 
The effect the ACE has in this case is to reduce the 
penalty signal to the artificial neural network that it is 
advising. This was caused by the present prediction, 
Pv(t), being larger than the past prediction, Pv(t-1). 
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FIGURE 13. E x a m p l e  e v a l u a t i o n  of he  I n t e r n a l  r e w a r d .  

7.4. Multi-Cube Feedforward Structures of  Sigma-Pi 
Units 

The sigma-pi model we use may be defined as a 
collection o f  site-values at the corners of  a hypercube 
and as such are termed cube based nodes. One of  the 
problems with fully connected networks of  sigma-pi 
(logical) nodes that require each unit to cover a large 
input retina is that these units suffer from the 
problem of  exponential rise in resources as the 
number of  inputs increases. For  example if one uses 
a 3-tuple we require 23 ~ 8 sites in the cube. But if we 
need a fully connected net to cover an input retina of  

Address 
decoder 

~ ~ Populationof 
values at sites 

- -  of hypercube 

25 inputs, then we require a 25-tuple giving 
225 ~ approx. 33 x 106 sites in the cube. 

A single cube nodes functionality may contain 
thousands more functions than required. If  one 
considers the standard sigma-pi unit with a single 
cube of site-values followed by an output  function, a 
linear extension of  this type of  structure would be to 
sum the outputs from several cubes (Gurney, 1989) 
and then pass this through an act ivat ion-output  
function. This is depicted in Figure 14. 

The next extension to this type of  structure would 
be to utilise linear weights on connections from other 
inputs or units to the summation unit of  the multi- 
cube unit, to enable these units to be configured into 
competitive networks (i.e., in competitive nets, the 
units compete for the opportunity to respond to the 
input stimuli). One should note that the multi-cube 
structure with no output  function, but just an integer 
output,  is the same structure as the W l S A R D  system 
(Wilkie, 1983), whereas if one configures the multi- 
cube unit with a hard limiting (or threshold) output 
function we have the type of  topology put  forward by 
Minsky and Papert  (1969) for their perceptron. 

The multi-cube structure overcomes the restriction 
that single-cube sigrna-pi units have, as the multi- 
cube is a linearly scaleable unit. We may also 
generalise this methodology to store other variables 
(not just site-values), as we have done in our  work on 
the quantised adaptive critic (Neville, 1993; Neville & 
Stonham, 1993, 1994b, c) to overcome general 
problems of  exponential increase of  resources, which 
relate to the number of  inputs to a system. 

Activation 
output 

function 

Address 
decoder 

21 \ \  --q 

\ \  

-I 

~J- I [ Population of 
" ~ \  values at sites 
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-I 

FIGURE 14. Single-cube sigma-pi unit TOP and a multi-cube sigma-pi unit BOTTOM. 
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FIGURE 15. Multi-cube quantised adaptive critic element. 

7.5. The Multi-Cube QACE 

The basic adaptive critic methodology utilises a single 
cube or n-tuple (where n is the number  of  inputs to 
the QACE, giving full coverage of  the input retina), 
for each of  the Pv(t), Pv(t-l)  and $~(t) variables. 

I f  the ACE has to operate with a large number of  
input variables, then using a single n-tuple to cover 
the whole input space would not  be feasible as the 
storage requirements grow exponentially. For  exam- 
ple, if we had 20 input lines (variables) we would 
require 22o storage locations for each of  the three 
different stored variables (i.e., the P~(O, Pv(t-l) and 
x,(t))- The multi-cube QACE is utilised to overcome 
the exponential rise of  resources as the number of  
input variables rise. If  one considers the QACE's 
input lines as connected to an input retina, then the 
input retina is sub-divided into sub-retinas. 

Each of  the partial retinas is then allocated three 
tuples to store the Pv(0, Pv(t-1) and ~(t) variables for 
that region. Then to calculate the overall or mean 
prediction, one sums all the partial predictions and 

divides by the number of  n-tuples (sub-cubes) 
covering the whole input retina. 

The multi-cube QACE, Figure 15, overcomes the 
above restrictions on its memory requirements as it is 
linearly scalable and may be utilised when one 
requires full connectivity. The mean output  of  these 
multi-cube structures is derived from several cubes, 
termed sub-cubes. 

The internal reinforcement then becomes: 

r ( t )  = r~ t  ) + ")'ev(t) - - / ~ v ( t - I )  (54) 

where/~v(.) is the mean of  all the addressed sites of  the 
"At"' sub-cubes. 

The mean prediction, _Pv(.), given by: 

1 k = N  P,(.)=~k~_?,,(.) (55) 

where the vectors defined by l:k, are the partial 



Adaptive Critic for Sigma--Pi Networks 619 

addresses presented to the sub-cones when the input 
vector address is v. The prediction values are now 
updated using the mean eligibility, x,(t), derived from 
all the sub-cubes, which is given by: 

| k=h" 

~,0) = . ~  ~,,,,. (56) 
F~q 

Hence the prediction is updated using: 

a e . . , . , ,  = aec,)~,(,)- (57) 

The input eligibility traces are updated as before, 
on a per sub-cube basis, where each sub-cube covers a 
fraction of the input retina. 

8. EXPERIMENTAL WORK 

8.1. The 8-3-8 Encoder 

The bench mark used to evaluate our research on 
the quantised ACE training with binary data was the 
8-3-8 Encoder, Figure 16, previously utilised by 
Hinton et al. (1984). The encoder network has eight 
inputs, three hidden units and eight outputs. The 
encoder's task is to transmit eight-bit binary input 
vectors across the hidden layer boundary, hence these 
units must learn to represent each vector with a 
different three-bit code. The problem relates to the 
complexity of coding training data onto the narrow 
channel. To explain this, we look at the case when 
only one of the eight bits in the input vector has a set 
bit, then the hyperplane in each output unit separates 
off a single corner on the 3-cube unit. This may be 
coded in eight ways, one for each corner of the cube, 
for the first output unit, leaving seven different coding 
choices for the next unit and so on giving 8 different 

coding solutions. This means there are 8 s possible 
code sets, so that only approximately 0.24% of these 
are useful. But to make the coding task hard we have 
four adjacent set-bits. Now each hyperplane must 
separate the cube into two equal parts. But when this 
is done by one node, there are immediate constraints 
on the coding the neighbouring units may utilise. 
Once four nodes have been specified the others are 
uniquely determined. This coding scheme yields 192 
viable valid codes, which represents about 0.0011% 
of all possible code solutions. 

Since all simulations begin with all site-values 
a(S~) = 0.5 or S~ = 0, giving P(Y = 11/~) = 0.5, i.e., 
50% probability of the output Y obtaining a value 
"1", in other words no prior information has been 
bestowed on the network, then finding a solution to 
such a problem requires that the two visible groups 
come to agree upon the meaning of a set of codes 
without any prior conventions for communicating 
through the hidden units. 

8.2. The 8-3-8 Encoder and Experimental 
Delimitations 

The encoder we utilise for these experiments is an 8 
input, 3 hidden unit and 8 output unit network as 
described in Section 8.1. The 8-3-8 encoder was used 
as a benchmark for this work. The training vector set 
used were hexadecimal numbers {F0, 78, 3C, 
1E, OF,87, C3,E1}, hence Np =8.  The training set 
was randomly ordered for each sample and a different 
seed was given to the stochastic operator of the net at 
the start of each training session. The training vectors 
each have four adjacent set-bits. 

The output-stream of the direct output node 
(DON) is utilised in the experimental work to 
communicate an estimate of the output value, 

Outputs 

Inputs 

FIGURE 16. The 8 3 4  encoder network. 
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y * E  [0,1]. The output-stream is utilised in the 
following manner.  The current input address # 
addresses, S~,, which is used to generate a new 
output-s t ream bit. We now count the number  of  ls 
(defined as N1) in the output-stream. Then an 
estimate for y* is obtained using: 

t N  
y" = ---:' (58) 

L 

where L is the length of  the output-s t ream and Nl is 
the number  of  ones in the stream. Assuming 
stat ionary conditions, the stream of  output  bits 
generated in this manner  will, over time, transmit 
an estimate of  the value of  y for a given node. The 
stream of  bits appearing at the output  may  be likened 
to the trains of  action potentials transmitted along 
axons. This means one is using a time integration of 
the output-s t ream to derive an estimate of  the 
output ' s  value. 

In order to define our error metric we first define a 
mean-squared error over a set of  Np patterns as: 

1 k=JV, 
E = ~.. E e~ (59) 

P k = l  

where the mean-squared error, e'0, is 

, 1 / ~ - '~ t  i 
eo = -~v i~=l l, Yt -- Yi* )2 (60) 

where Y~ ~ {0, 1} was the target output  and yi* was 
estimated from an output-stream which was a 100 bit 
long stream, L = 100, this is summed over all Nv 
output  units. The sum is over the set Iv of  these 
output  units. The results presented in the following 
paragraphs  show graphs of  the error ~0, given by: 

1 n=Nfn 

~o =~-d ~ e (61) 
n = l  

the average error over one hundred trained networks 
(Ntn = 100) after 6000 training cycles had elapsed, 
over  all Np training patterns, where each output,  y*, is 
calculated after 100 forward passes. I t  is important  to 
note that if  this is not done and one takes the 
instantaneous output  o f  the s igma-pi  visible units one 
obtains a probabilistic output and we require an 
estimate of  a deterministic output. 

For  all experiments the constants we utilise are 
p = 0.3, Arp = 0.0 and Sm E { - 1 0 , . . . , + 1 0 } .  For  the 
A C E  7 = 0.95, Aace = 0.8, fl = 0.5 and 
Pn = $~ = N = 8. Each graph has a y-axis which is 
the average error, ~0, and an x-axis which is 

.2 

0.1-- I I I I I I 
0.1 0.3 0.6 1.0 3.0 6.0 10.0 

Learning rate 

FIGURE 17. Average log er ror  6o versus log a, for sigma-pi 
based 8-3-8 encoder with eight training vectors having four set- 
bits. The graph shows the average error e0, over 100 trained 
nets, after the nets have been trained for 6000 cycles. 

partitioned for eight learning rates a =  {0.1,0.25, 
0.5, 1.0, 2.0, 5.0, 10.0, 20.0}. 

8.3 Standard Associative Reward-Penalty .4A_p 

Presented in Figure 17, is a simulation of  the effect of  
varying the standard associative reward-penal ty 's  
learning rate a,  as previously described in Section 8.2. 
The graph shows that  the optimal learning rate is 
a = 1.0 as it reduces the average error, ~0, by the 
largest amount.  Fo r  learning rates les than or greater 
than a = 1.0, one obtains a lower average error 
figure. This graph is presented as a base line for 
comparing the results presented in this section. 

8.4. Real-Valued Reinforcement Associative 
Reward-Penalty A R_ p~ 
Comparison of  the s tandard associative A R - e  and 
real-valued r 9~, A R _ e  ~ is shown in Figure 18. The 
results presented in the graph show that for learning 
rates greater than a = 2.0 the real-valued reinforce- 
ment  associative reward-penal ty  was more efficient at 

~ ~ 0 . 2  - o// 

0.1- I I I I I I 
0.1 0.3 0.6 1.0 3.0 6.0 10.0 

Learning rate 

FIGURE 18. Average log er ror  eo versus log a, for s igma-pi  
based 8-3-8 enceder with eight training vectors having four set- 
bits. The graph shows the average error ~ over 100 trained 
nets, after the nets have been trained for 6000 cycles. The dotted 
l ine shows the error for the standard AR-p. The solid l ine shows 
the error with real-valued reinforcement rgle[0,1]. 
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0.1 
0.1 0.3 0.6 1.0 3.0 6.0 10.0 

Learning rate 
FIGURE 19. Average log er ror  eo versus log ,% for  slgme.-pl 
based 8-3-8 encoder with eight training vectors having four set- 
bits. The graph shows the average error  6o over 100 trained 
nets, af ter the nets have been trained for 6000 cycles. The dotted 
l ine shows the er ror  for the standard An-p.  The solid l ine shows 
the er ror  with one QACE and "bounded"  Internal reinforcement 
r*({0.O . . . .  1.0}. 
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FIGURE 21. Average log er ror  eo versus log r,, for s igma-pl  
based 8-3-8 encoder wlth elght training veclors havlng four set- 
blts. The graph shows the average er ror  6o over 100 tralned 
nets, after the nets have been trained for  6000 cycles. The dotted 
line shows the error  for the standard Aa_p. The solld l ine shows 
the error  wlth a multl-cuba QACE and "bounded"  Internal 
relnforcornent r * ( {0 .0 , . . . ,  1.0}. 

training the 8-3-8 encoder net. If one considers the 
reduction in average error, ~0, over all eight learning 
rates, the overall improvement was 9% better than 
the standard associative reward-penalty results 
shown by the dotted line in Figure 18. 

"bounded" QACE regime than for the standard 
AR_p training rule, while the average error over all 
eight learning rates was 11% lower for the 
"unbounded" QACE regime than for the standard 
AR_ e training rule. 

8.5. Quantised Adaptive Critic and Associative 
Reward--Penalty Training 

The following figures give the simulation results for 
one QACE; Figure 19 shows the effect of "bounded" 
internal reinforcement r* E { 0 . 0 , . . . ,  1.0} and Figure 
20 the "unbounded" r* E {-- 1 . 0 , . . . ,  2.0}. The graphs 
presented show that the quantised adaptive critic and 
associative reward-penalty results give lower average 
errors after 6000 training cycles, for learning rates of 
greater than a =  1.0 for the "bounded" and 
"unbounded" ,4R-e regimes. The average error over 
all eight learning rates was 10% lower for the 

8.6. Multi-Cube Quantised Adaptive Critic and 
Associative Reward-Penalty Training 

Finally the multi-cube QACE is simulated, with four 
2-tuples covering the input retina of the 8-3-8 
encoder. Figure 21 shows the effect of "bounded" 
internal reinforcement, r*E {0.0, . . . ,  1.0}, and Fig- 
ure 22 the "unbounded" internal reinforcement, 
r* E {-- 1.0,. . . ,  2.0}. 

The two graphs show that the "bounded" multi- 
cube QACE and the AR-e methodology, while the 
"unbounded" multi-cube QACE and AR-e training 
gave a further reduction of the overall average error 
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FIGURE 20. Average log er ror  ea versus log a, for  s igma-pi  
based 8-3-8 encoder with eight training vectors having four set- 
bits. The graph shows the average error  e0 over 100 trained 
nets, after the nets have been trained for 6000 cycles. The dotted 
l ine shows the er ror  for the standard AR-p. The solid l ine shows 
the er ror  with one QACE and "unbounded"  Internal reinforce- 
ment r*({--1.0,.. . ,  2.0}. 
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FIGURE 20. Average log er ror  60 versus log ~, for s igma-pi  
based 8-3-8 encoder with eight training vectors having four set- 
bits. The graph shows the average er ror  ~ over 100 trained 
nets, after the nets have been trained for  6000 cycles. The dotted 
line shows the error  for the standard AA-p. The solid l ine shows 
the error  with a multi-cuba QACE and "ubounded"  Internal 
reinforcement r ' e { - 1 . 0 , , . . .  : 2.0}. 
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of a 19% drop over all eight learning rates when 
compared with the standard A R - p  training regime, 
the dotted line in the graph. 

9. DISCUSSION 

Our research into an adaptive critic for sigma-pi 
networks utilised an unsupervised critic net in 
parallel with a supervised logical neural network. 
The critic provides advisory information to the 
net which was found to augment the net's training 
efficiency. These techniques use what has been 
termed an "adaptive critic element" to give critical 
advice to the sigma-pi network which has been 
given a specific task. This leads us to the more 
notable achievement of  the presentation of  an 
extension to the associative reward-penalty algo- 
rithm, which utilised a quantised adaptive critic 
element (QACE) and "unbounded"  internal reinfor- 
cement signal, which permits penalisation of  a net 
even when the penalty coefficient, Arp, is set to 
zero. It should be noted, of  course, that it is 
normally the case that the net is only penalised if 
the penalty coefficient is non-zero, 0 ~< Arj, < 1. 

It is of  interest to note that in the field of  (logical) 
neural networks a limitation may exist which stems 
from the fact that it is normally the case that 
supervised learning regimes only rely on an error 
figure, which only relates to the present input pattern 
or batch of  present input patterns, to adapt the 
weights of  the net while training. This may be a 
limitation as no other knowledge is utilised during 
training, while the QACE and the A R - p  training 
methodology utilises data that relates to past and 
present data (events). 

In this research we study the effects of using an 
unsupervised quantised adaptive critic placed hier- 
archically above a supervised sigma-pi network, 
where the critic monitors the input stimuli and 
traces the frequency of  "stimuli" occurrence. This 
was then used to derive predictions of  reinforcement, 
based on the past and present predictions. The 
predictions of reinforcement are then used to 
calculate an internal reward signal. 

The investigation into an adaptive critic for 
sigrna-pi structures introduces one to the concept of  
utilising two networks in parallel, working toward 
the same goal of  optimising a function over time. 
This work involved carrying over methodologies 
from the field of  semi-linear structures to our 
sigma-pi units or cube-based logical nodes and the 
realisation that by utilising the conventions of  
sigma-pi nodes (e.g., quantisation of  variables) one 
may implement the quantised adaptive critic in 
hardware. 

10. D E V E L O P M E N T  OF IDEAS 

Our investigation, which relates to the adaptive 
learning rule work we previously carried out 
(Neville & Stonham, 1992, 1994a), studies how to 
further increase the associative reward-penalty's 
learning rule efficiency. We used an adaptive critic 
to obtain more information from the incoming data 
to better adjust the reinforcement signal to the net. 

The research into the adaptive critic evolved as an 
extension of  our  initial work with adaptive associa- 
tive reward-penalty training where we developed 
adaptive training regimes (Neville & Stonham, 1992, 
1994a). Here we looked at the problem from a 
different perspective, which was to utilise predictive 
techniques in order to define an "internal" reinforce- 
ment. We used the same methodology for the 
adaptive critic that we utilise for sigma-pi units, 
which was that each variable was quantised and these 
were then stored in addressable locations in n-tuples. 
We also initially limited or "bounded"  the value of 
the "internal"  reward signal to the more normal {0, 
l} (Barto & Jordan, 1987). The internal reinforce- 
ment was derived from predictions of  the reinforce- 
ment which are in turn derived from eligibility traces. 
This turned out  to be a non-optimal solution and 
when we stopped restricting the "internal" rewards 
value, as was the case for the "unbounded"  
(r~t) E { - 1 . 0 , . . . ,  2.0}), we obtained an extension to 
the reinforcement training methodology which 
permits penalisation of  a sigma-pi net even when 
the penalty coefficient, Arp, was set to zero. Normally 
the net is only penalised if the penalty coefficient is 
non-zero, 0 < Arp < 1. This "unbounded"  approach 
may have repercussions if it is carried over to research 
on semi-linear units. 

The other novel feature of the work on quantised 
adaptive critics was the realisation that one may 
utilise the multi-cube structure to enable storage of  its 
variable to be linearly scalable, as the number of 
inputs increases. 

11. CONCLUDING REMARKS 

The results for the series of simulations are given in 
Table 1. Here we compare the three different methods 
with the standard associative reward-penalty, AR-p, 
learning rule. The percentage figure represents the 

TABLE 1 
Average Reduction of Error for the Eight Learning Rates 

" B o u n d e d  . . . .  U n b o u n d e d "  

Real-value AR_p '~ 9 %  - -  
Single QACE 10% 11% 
Mul t i -cube QACE 10% 19% 
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average percentage reduction of the average error, ~0, 
over all eight learning rates when compared with the 
standard associative reward-penalty, AR-e, update 
rule. 

When comparing all the quantised adaptive critic 
elements (QACEs) with real-valued associative 
reward-penalty (A~_e) we see that the quantisation 
of the prediction and eligibility trace values does not 
reduce the training efficiency. 

The "unbounded" quantised reinforcement QACE 
gives increased efficiency of training when compared 
to the "bounded" version. It is of interest that the 
"unbounded" multi-cube QACE induces more 
efficient training, this may be explained by noting 
that the net is given more information while training. 
The increase of information provided to the net is due 
to :  

(a) The "unbounded" reward signal's ability to 
reward-penalise the net to a higher degree. If, 
for example, the external reward provides a 
penalty signal and the temporal difference 
between the predictions is a negative quantity 
(i.e., the 7Pv(t) <P~(t-l)) the prediction of 
reinforcement is reduced, and then the critic 
advocates penalisation of the net to a greater 
degree. The critic may also increase the reinforce- 
ment if the external reinforcement signal is a 
reward and the temporal difference between the 
predictions is positive (i.e., 7Pv(t) > ev( t - l ) ) .  

(b) When utilising a multi-cube [i.e., multiple n- 
tuples, with an output sigma that sums the 
presently addressed sites in each tuple to give 
an average (mean) value (re. Section 7.5)] to store 
the predictions and trace values one deviates 
from the original concept of Barto et al. (1983). 
Barto utilises what he terms "one in a box" 
coding to provide an input address for the 
associative search element (ASE) and the 
adaptive critic element (ACE), which is analo- 
gous to a single n-tuple, where each input address 
only addresses one site. One should, of course, 
note that the term "n-tuple", which is used as a 
sigma-pi or logical node stores the site-values in 
an n-tuple, which is addressed by an n bit input 
vector {xl,x2, . . . ,xn}.  The methodology of "n- 
tuple" pattern recognition techniques was origin- 
ally researched by Bledsoe and associates (1959, 
1962). In the case of  logical or RAM-based 
nodes, mapped to a digital input retina, each 
pixel in the input image is represented by a single 
bit. A number "'n" of such bits taken from the 
input image form an n-tuple input vector. In the 
case of the single-cube sigma-pi unit the input 
addresses a single site, #, which contains a site- 
value, S~,, which determines the probability of 
outputting a logical 'Y ' ,  while in multi-cube 

structures the output is defined by summing the 
sites in the sub-cubes and dividing by the number 
of sub-cubes to obtain a probability of outputting 
a logical "1". This means, in the case of the 
multicube QACE, that when one utilises 
"partial" predictions (e.g., each sub-cube only 
provides a "partial" prediction, which are then 
summed to provide the total prediction) one is in 
effect taking into account information which 
relates to the occurrence of the "partial" 
addresses in the input stimuli. 

In this research we have put forward the quantised 
adaptive critic methodology which enables one to 
extend the original version of AR-e for sigma-pi nets 
by encapsulating a critic element in the environment 
to enable the reinforcement signal to provide more 
detailed information to the net while it is being 
trained. 

We have also overcome one of the problems of  the 
QACE, which is the exponential growth of resources 
when the number of inputs to it increases, by utilising 
a multi-cube structure. A notable achievement of this 
research is the presentation of an extension to the 
reinforcement training methodology that utilises an 
"unbounded" reinforcement signal, which permits 
penalisation of a net even when the penalty coefficient 
is set to zero, normally the net is only penalised if the 
penalty coefficient is non-zero. 
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NOMENCLATURE 

real-valued activation of the/ th node 
real-valued weight between node i and j 
sigmoid function 
reads as "sigmoid prime", represents the 

derived function of (-) 
hypercube site or addresses # 
site-value at site-address 
probability of event X occurring 

X 

Y 
(k) 
k* 
(ql } 

r 

Zx( v) 
ot 

A 

P 

sgn( ASt`) 

binary input vector, which may be 
represented by a set of bits 
{x,,x2,...,xo} 

binary output 
expectation of variable k 
estimate of value of k 
set of elements of q for which the property 

s holds 
binary scalar reward signal 
binary target output response 
incremental (or 6) change in value of v 
learning rate 
punishment coefficient; sets ratio of 

punishment to reward in the training 
regime 

parameter governing steepness of 
sigmoidal function 

is the sign of the delta change ASt` (i.e., if 
ASt` = 1.25 then sgn(ASt`)u = +1 and 
if AS~, = - 1.6 then sgn (AS t, ) = - 1) 


